Sensor Development

ACHIEVEMENTS AND FORWARD LOOK MATT MOWLEM HEAD OCEAN TECHNOLOGY AND ENGINEERING GROUP

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

Ocean Technology and Engineering Group (OTEG)

Mission ("To develop novel technology and engineering resulting in the greatest impact for environmental and marine science")

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

Ocean Technology and Engineering Group (OTEG)

Mission ("To develop novel technology and engineering resulting in the greatest impact for environmental and marine science")

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

Ocean Technology and Engineering Group Sensors Post MARS

- Water physics (CTD)
- Water chemistry
- Water biology
- Sediment flow and properties
- Wave height / breaking
- Sea level
- Sea surface fluxes
- Enabling systems
- Metrology standards
- Interoperability and metadata
- Comms & Data flow
- Sensors on platforms
- Autonomous sea level

Post MARS

- Samplers
- Continuous water
- Gas tight water
- Particles
- Genomics
- Landers and benthic systems
- Communication systems
- Sterile probes / vehicles
- Vehicles: Gliders

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

noc.ac.uk

GOOS EOV

Readiness level: CONCEPT | PILOT | MATURE [Click on each EOV for their repsective spec sheets]

PHYSICS	BIOGEOCHEMISTRY	BIOLOGY AND ECOSYSTEMS		
Sea state	Dissolved Oxygen	Phytoplankton biomass and productivity		
Ocean surface vector stress	Inorganic macro nutrients Harmful Algal Bloom (HAB) incidence			
Sea ice	Carbonate System	Zooplankton diversity		
Sea surface height	Transient tracers	Fish abundance and distribution		
Sea surface temperature	Suspended particulates	Apex predator abundance and distribution		
Subsurface temperature	Nitrous oxide	Live coral cover		
Surface currents	Carbon isotope (13C)	Sea grass cover		
Subsurface currents	Dissolved organic carbon	Mangrove cover		
Sea surface salinity		Macroalgual canopy cover		
Subsurface salinity				
Heat flux / radiation				

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

GOOS EOV

Readiness level: CONCEPT | PILOT | MATURE [Click on each EOV for their repsective spec sheets]

PHYSICS	BIOGEOCHEMISTRY	BIOLOGY AND ECOSYSTEMS	
Sea state	Dissolved Oxygen	Phytoplankton biomass and productivity	
Ocean surface vector stress	Inorganic macro nutrients	Harmful Algal Bloom (HAB) incidence	
Sea ice	Carbonate System Zooplankton diversity		
Sea surface height	Transient tracers Fish abundance and distribution		
Sea surface temperature	Suspended particulates	Apex predator abundance and distribution	
Subsurface temperature	Nitrous oxide	Live coral cover	
Surface currents	Carbon isotope (13C)	Sea grass cover	
Subsurface currents	Dissolved organic carbon	Mangrove cover	
Sea surface salinity		Macroalgual canopy cover	
Subsurface salinity			
Heat flux / radiation			

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

biogeochemical model of the ocean system

Summary of the Tasks outlined in SenseOCEAN mapped onto

the current state of the art

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

noc.ac.uk

Marine Sensors Technologies and TRL

Microfabricated Solid State / Electrochemistry:

- Salinity 7
- Dissolved oxygen 7

Optodes / optical sensors

- Gases inc. methane 6
- pH, pCO₂ 7
- Radionuclide 3

Lab on Chip Cytometer

- Whole cells (label free) 5
- Labelled cells 5
- Microplastics 4
- Bead assays 3

Lab on Chip Chemistry

- Inorganic Nutrients 8
- Organic Nutrients 5
- Trace metals 7
- pH 7, TA 4, DIC 3, pCO₂ 4
- Small organics, e.g. PAH, PCBs (f-pM) 5
- Proteins and large organics (copies / L) 4
- Nucleic Acids (copies / L) 6
- Radionuclide 3

2016 Highlights

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

Demo / test Kiel Fjord Sept. 2016

Title of Piesereuton

NERC SCIENCE OF THE ENVIRONMENT

National Oceanography Centre

Kiel Preliminary Results: pH

Preliminary LOC data from T. Yin (NOC) and TU Graz team (Optodes)

NOC chemical sensor platform

- Now operational for several parameters
- Platform technology easy to adapt to other absorbance-based assays
- Works at pressure (deepest deployment to date 4800 m)
- Small enough for glider/AUV deployment
- Low power (year long deployment on batteries achieved)

NOC chemical sensor platform

- Now operational for several parameters
- Platform technology easy to adapt to other absorbance-based assays
- Works at pressure (deepest deployment to date 4800 m)
- Small enough for glider/AUV deployment
- Low power (year long deployment on batteries achieved)

LOC Sensor	Analytical method	Measurement type	LOD/precision*	
Nitrate + nitrite	Griess assay (with Cd reduction)	Colourimetry (absorbance)	20 nM	
рН	Thymol blue	Dual wavelength absorbance	0.001 pH units*	
Phosphate	Molybdenum blue (modified)	Colourimetry (absorbance)	30 nM	
Iron (II), Iron (III)	Ferrozine (with ascorbic acid reduction for Fe (III))	Colourimetry (absorbance)	20 nM	
Silicate	Silicomolybdic acid	Colourimetry (absorbance)	20 nM	
Ammonium	OPA + membrane	Fluorescence	1 nM	
Total alkalinity	BCG with TMT or single step	with TMT or single Dual wavelength (2 step absorbance		
DIC	Membrane+ C of NaOH Conductivity (2 µ		(2 µM)*	
Organic N and P	UV digester + inorganic system	Colourimetry (absorbance)	(20 nM)	

noc.ac.uk

NERC Macronutrient Cycles: Nitrate in a river

Hampshire Avon deployment site

Sensor after deployment in River

rate sensor in

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

NERC Macronutrient Cycles: Nitrate in a river

National Oceanography Centre

noc.ac.uk

NF

Nutrient Challenge: Nitrate and phosphate in a Maumee River, Ohio

SenseOCEAN: Dissolved iron in Kiel Fjord

Time (12.09. - 20.09.2016)

National Oceanography Centre

NOC pH sensor field tests

Gullmar fjord, Sweden June 2015

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

CMEP: Tropical coastal waters

Allison Schaap

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

noc.ac.uk

CMEP: Tropical coastal waters

National Oceanography Centre

noc.ac.uk

DELVE: Nitrate in glacial meltwater

Nitrate sensor deployed in glacial streams draining Greenland Ice Sheet

Sub-zero temperatures and highly turbid waters

noc.ac.uk

DELVE: Nitrate in glacial meltwater

National Oceanography Centre

noc.ac.uk

Nitrate deployment on gliders

Celtic Sea, April 2015

Alex Vincent & Maeve Lohan, NOC / SOES (U. Soton)

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

Temperature (°C)

Chlorophyll (mg/m³)

Nitrate (µM)

FixO3 TNA: Year-long unattended in the Arctic

Funded by FixO3

LOC nitrate sensors deployed in two moorings on Fram Straight for one year (50 – 80 m deep, two measurements per day)

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

Contract Research Aptamer / Antibody PAH sensor proof of concept

0,6

0,4

0,2

0

1

-0,2

Naphthalene aptamer sensor ($K_d = 1.3 \pm 0.3 \text{ nM}$)

Phenanthrene aptamer sensor $(K_d = 995 \pm 208 \text{ nM})$

100

10

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

noc.ac.uk

105

10⁴

1000

concentration titrant (nM)

Fluorescence Curves for Aptamer Beacons in Seawater

250.0

200.0

150.0

100.0

50.0

0.0

0.0

A RFU

Naphthalene aptamer sensor $(K_d = 1.3 \pm 0.3 \text{ nM})$

Phenanthrene aptamer sensor $(K_d = 995 \pm 208 \text{ nM})$

100.0

PAH Concentration

150.0

50.0

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

noc.ac.uk

200.0

250.0

BBSRC sustainable aquaculture: Pathogens in Shellfisheries Water

Salmonella spp.

Norovirus

Cryptosporidium

Water-borne pathogens are (typically) difficult to measure

- Very diverse (bacteria, viruses, parasites, virulent and non-virulent strains)
- Low concentration / low infectious dose (e.g. Norovirus; ≥18 viral particles)
- Lack of good bio-analytical methods (many can't be cultured)
 - Diseases of unknown origin

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

noc.ac.uk

Quantitation of Microorganisms in Natural Waters using the LabCard NASBA

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

New NASBA Assays for *E. coli* DNA

Challenges:

•

- High genomic diversity In the environment.
- Genome size is approx. 4,000-5,000 unique genes.
- >2,000 sequenced genomes
- Approx. 300 core genes*
- Target sequences are not always unique

*Miriam Land et al (2015) Funct. Integr. Genomics 15, 141-161

Bioinformatics methods were employed to find *E. coli* sequences that were...

- Unique to *E. coli*
- Ubiquitous in *E. coli* strains

Confirmed experimentally using library of *E. coli* (ECOR) and non-*E. coli* bacteria from different hosts and geographical locations

noc.ac.uk

Monthly evaluation of the existing and new assays using "real" water samples

Samples Collected in Southwest England

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

noc.ac.uk

Preliminary Results from Month One

Sample	Plate Assay Mean (n=3) (CFU / 100 mL)	RNA Assay after thermal induction (Cell Equivalents / 100 mL)	DNA assay (Genome Copy / 100 mL)	Comment
Saline, inshore (bathing water)	21	Not Detected	Not Detected	Possible to detect ≥ 10 cells in pure culture. Negative result due to inhibitors?
Spiked saline (<i>E. coli</i> type)	6533	3,100	8,500	RNA underestimation; DNA overestimation
Estuarine	1933	900	3,200	RNA underestimation; DNA overestimation
Spiked estuarine (E. coli type)	6600	400	8,700	RNA underestimation; DNA overestimation
Tertiary sewage treatment works (post UV)	121,500	Not Detected	Not Detected	Sample inhibition
Tertiary sewage treatment works (pre-UV)	274,667	Not Detected	Not Detected	Sample inhibition
Secondary sewage treatment works	149,000	Not Detected	Not Detected Sample inhibition	
Positive control (<i>E. coli</i> type)	274,667	211,500	430,200	RNA underestimation; DNA overestimation
Negative control	0	Not Detected	Not Detected	

noc.ac.uk

Other developments: A New One-step NASBA

Development of new reagent preservation methods

Optimisation of primer annealing

zymes

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

A New LOC for Spacial Multiplexing on Chip

Six chamber chip supporting six replicate One-step NASBA reactions.

Uses centrifugal force to achieve mixing of sample with dehydrated reagents

Reagent reservoir

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

BBSRC sustainable aquaculture: Cytometer for HAB detection and quantification

Simultaneous measurement of electrical (impedance) and optical properties of individual cells

In-lab prototype No air required for optics or operation (suitable for deep sea)

Challenges include sample concentration, and optical detection limits (power in chip)

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

CT-DO Sensor: Commercialisation

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

noc.ac.uk

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

noc.ac.uk

Data Flow

- Easily discover sensors and their metadata
- Sensors and sensor observations discoverable, accessible and useable via the web
- Seamlessly integrate sensors from Sense Ocean Network with sensors from other networks

National Oceanography Centre Natural Environment research council

<om:OM_Observation gml:id="ExampleOutOfBandNetCDF" xmlns:cm=http://www.wg.org/2001/XMLSchema-instance" xmlns:xlink="http://www.wg.org/1999/xlink" xmlns:gml=http://www.opengis.net/gml/3.2 xsi:schemaLocation="http://www.opengis.net/om/2.0 http://schemas.opengis.net/om/2.0/observation.xsd">> <gml:description>Observation instance with remote result</gml:description> <om:type xlink:href="http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_TimeSeriesObservation"/> <om:phenomenonTime> <gml:TimePeriodgml:id="phenomenonTime-JULD-1"> <gml:beginPosition>2015-01-11T17:22:25.00</gml:beginPosition> <gml:endPosition>2015-01-11T18:22:25.00</gml:endPosition> </gml:TimePeriod> </om:phenomenonTime> <om:resultTime> <gml:TimeInstant gml:id="resultTime-DATE UPDATE"> <gml:timePosition>2015-01-11T18:22:25.00</gml:timePosition> </gml:TimeInstant> </om:resultTime> <om:procedure xlink:href="http://linkeddey.bodc.ac.uk/system/instance/TOOL0969_1234"/> <om:observedProperty xlink:href="compositeTOOL0969.xuu <om:featureOfInterest xlink:href="http://vocab.nerc.ac.uk/collection/S26/current/MAT00640/"/> <om:result> <swe:DataStream> <swe:elementType name="Components"> <swe:DataRecord> <swe;field name="time"> <swe:Quantity> <swe:label>TIME</swe:label> <swe:uom code="s" /> </swe:Quantity> </swe:field> <swe:field name="Temp" xlink:href="http://vocab.nerc.ac.uk/collection/P01/current/TEMPPR01/"> <swe:Quantity> <swe:label>Temperature of the water body</swe:label> <swe:uom code="Cel" xlink:href="http://vocab.nerc.ac.uk/collection/P06/current/UPAA/" /> </swe:Quantity> </swe:field> <sweifield name="WC_diss02_optode" xlink:hr ="http://vocab.nerc.ac.uk/collection/P01/current/D0XY0P01/"> <swe:Quantity> <swe:label>Concentration of oxygen {02} per unit volume of the water body [dissolved plus reactive particulate phase] by in-situ oxygen optode</swe:label> <swe:uom code="umol/L" xlink:href="http://vocab.nerc.ac.uk/collection/P06/current/UPOX/"/> </swe:Quantity> </swe:field> <swe:field name="WC_diss02_uncalib_2" xlink:href="http://vocab.nerc.ac.uk/collection/P01/current/D0XYUZ02/"> <swe:Quantity> <swe:label>Concentration (second sensor) of oxygen {02 CAS 7782-44-7} per unit volume of the water body [dissolved plus reactive particulate phase] by in-situ sensor and no calibration against sample data</swe:label> <swe:uom code="% xlink:href="http://vocab.nerc.ac.uk/collection/P06/current/UPCT/"" /> </swe:Quantity> </swe:field> </swe:DataRecord> </swe:elementType> <swe:encoding> <swe:BinaryEncoding byteEncoding="raw" byteOrder="bigEndian"> <swe:member> <swe:Component ref="application/x-netcdf" dataType="http://www.unidata.ucar.edu/software/netcdf/"/> </swe:member>

Publication & Discovery

Linked data Mainly for machine to machine access!!!

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

2017 Forward look

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

Marine Sensors Technologies and TRL 2011,2016,2021,2026

Microfabricated Solid State / Electrochemistry:

- Salinity 5-8-9-9
- Dissolved oxygen 4-7-9-9

Optodes / optical sensors

- Gases inc. methane 6-6-8-9
- pH, pCO₂ 4-<mark>6-</mark>8-9
- Radionuclide 1-3-5-8

Lab on Chip Cytometer

- Whole cells (label free) 4-5-7-9
- Labelled cells 3-5-6-8
- Microplastics 2-4-7-9
- Bead assays 2-3-6-8

Lab on Chip Chemistry

- Inorganic Nutrients 6-8-9-9
- Organic Nutrients 2-5-7-9
- Trace metals 4-7-8-9
- pH 5-7-9-9, TA 2-4-7-9, DIC 2-4-9-9, pCO₂ 2-4-6-8
- Small organics, e.g. PAH, PCBs (f-pM) 2-5-6-8
- Proteins and large organics (copies / L) 2-4-6-7
- Nucleic Acids (copies / L) 5-6-7-9
- Radionuclide 1-3-5-7

OTEG LOC sensors development status

LOC Sensor	Subsystems developed	Benchtop system	Shipboard measurements	In situ deployment
Nitrate	\checkmark	\checkmark	\checkmark	\checkmark
рН	\checkmark	\checkmark	\checkmark	\checkmark
Phosphate	\checkmark	\checkmark	\checkmark	\checkmark
Iron	\checkmark	\checkmark	-	\checkmark
Silicate	\checkmark	\checkmark	2017	2016
Ammonium	\checkmark	\checkmark	\checkmark	Late 2017
Total alkalinity	\checkmark	\checkmark	2017	2017
DIC	\checkmark	very close	2017	Late 2017
Organic N and P	\checkmark	\checkmark	2017	2017

OTEG LOC sensors - in situ deployments projected

LOC Sensor	River/ estuary	Coastal	At depth	Glacial melt	Year- long (unattended)	Glider or AUV	Argo float
Nitrate	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2017
рН	\checkmark	\checkmark	\checkmark			2017	
Phosphate	\checkmark	\checkmark	\checkmark	2017	2018?	2017	2017
Iron	\checkmark	\checkmark	\checkmark	2017			
Silicate	2016	2017	2017	2018		2017	

2017 Forward look highlights

SenseOCEAN final year / deployments / demonstrations

• Demonstration on Apex (PROVOR) (Nitrate, Phosphate, pH)

National Oceanography Centre Natural environment research council

Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

noc.ac.uk

2017 Forward look highlights

SenseOCEAN final year / deployments / demonstrations

Demonstration on Apex (PROVOR) (Nitrate, Phosphate, pH)
Integration into SLOCUM glider

National Oceanography Centre Natural environment research council

2017 Forward look highlights

SenseOCEAN final year / deployments / demonstrations

Demonstration on Apex (PROVOR) (Nitrate, Phosphate, pH)
Integration into SLOCUM glider
Integration into ALR and trials for ETI

National Oceanography Centre Natural environment research council

ETI CCSMV - Project

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

noc.ac.uk

CCS Sensors package: commercial

SeapHOx

SBE52 CTD SEAFET SBE43F DO

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

noc.ac.uk

CCS Sensors package: NOC

lab on a chip TRL 7: pH, Phosphate, Nitrate TRL 4-7: TA, DIC

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

2017 Forward look highlights

SenseOCEAN final year / deployments / demonstrations

Demonstration on Apex (PROVOR) (Nitrate, Phosphate, pH)
Integration into SLOCUM glider
Integration into ALR and trials for ETI
Pathogen detection in the field
CTDO product launch
LOC license agreement / commercialisation

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

Acknowledgements

Work by current and past members of OTEG

Group head: Matt Mowlem Subgroup heads:

Robin Pascal (Multidisciplinary) Socratis Loucaides (Analytical science) Chris Cardwell (Electronics & Software) Kevin Saw (Mechanical)

Collaborators at: University of Southampton NOC Plymouth Marine Laboratory Scottish Marine Institute GEOMAR and others

Photos from Dave Owsianka, Alex Beaton, Martin Arundell and others

NERC

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL